博客
关于我
投影对角化自旋激发
阅读量:231 次
发布时间:2019-03-01

本文共 668 字,大约阅读时间需要 2 分钟。

基于紧密包层模型构建哈密顿量并计算谱函数


本文基于紧密包层模型构建哈密顿量并计算谱函数,具体步骤如下:

  • 构建哈密顿量

    使用参数 t 表示最近邻 hopping 系数,k 表示 Bloch 波矢量,N 表示系统宽度,构建哈密顿量矩阵 H。通过 tridiag(A,B,B.H,N) 函数构造对角化矩阵,确保矩阵具有对称性。调整 H[0,0] 为 1000 以避免零点问题。

  • 对角化哈密顿量

    对每个给定的 k 值,计算对应的哈密顿量矩阵 Hk0,并对其进行对角化。使用 LA.eigh 函数求得本征值 E 和对应的本征向量 A,提取 A[:,N-1] 作为特征向量。

  • 绘制能带图

    将对角化结果绘制为能带图,使用 plt.plot(k,band[i,:]) 绘制每个能带的分布,设置 plt.ylim((-1,1)) 以限制纵轴范围。

  • 验证本征态

    通过绘制特定能量态的实部图形 plt.plot(Ak[:,1].real),验证本征态的正确性。

  • 构造有效投影自旋激发哈密顿量

    在基态 U 上构造有效投影自旋激发哈密顿量 H_eff。通过循环移位技巧处理 Ak 矩阵,计算非对角项并调整矩阵大小,确保最终结果通过归一化处理。

  • 计算谱函数

    使用循环移位技巧处理矩阵 Ak,计算谱函数。通过傅里叶变换和矩阵移位,构建频域谱函数矩阵 Spectral_A,并使用 plt.pcolormesh 绘制谱函数图形。


  • 所有代码和算法均基于紧密包层模型,确保计算过程的高效性和准确性。通过对多个参数的遍历和多维度数组的处理,实现了对哈密顿量谱函数的精确计算。

    转载地址:http://wlqv.baihongyu.com/

    你可能感兴趣的文章
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy最大值和最大值索引
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>
    numpy绘制热力图
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    Numpy闯关100题,我闯了95关,你呢?
    查看>>
    nump模块
    查看>>
    Nutch + solr 这个配合不错哦
    查看>>
    NuttX 构建系统
    查看>>