博客
关于我
投影对角化自旋激发
阅读量:231 次
发布时间:2019-03-01

本文共 668 字,大约阅读时间需要 2 分钟。

基于紧密包层模型构建哈密顿量并计算谱函数


本文基于紧密包层模型构建哈密顿量并计算谱函数,具体步骤如下:

  • 构建哈密顿量

    使用参数 t 表示最近邻 hopping 系数,k 表示 Bloch 波矢量,N 表示系统宽度,构建哈密顿量矩阵 H。通过 tridiag(A,B,B.H,N) 函数构造对角化矩阵,确保矩阵具有对称性。调整 H[0,0] 为 1000 以避免零点问题。

  • 对角化哈密顿量

    对每个给定的 k 值,计算对应的哈密顿量矩阵 Hk0,并对其进行对角化。使用 LA.eigh 函数求得本征值 E 和对应的本征向量 A,提取 A[:,N-1] 作为特征向量。

  • 绘制能带图

    将对角化结果绘制为能带图,使用 plt.plot(k,band[i,:]) 绘制每个能带的分布,设置 plt.ylim((-1,1)) 以限制纵轴范围。

  • 验证本征态

    通过绘制特定能量态的实部图形 plt.plot(Ak[:,1].real),验证本征态的正确性。

  • 构造有效投影自旋激发哈密顿量

    在基态 U 上构造有效投影自旋激发哈密顿量 H_eff。通过循环移位技巧处理 Ak 矩阵,计算非对角项并调整矩阵大小,确保最终结果通过归一化处理。

  • 计算谱函数

    使用循环移位技巧处理矩阵 Ak,计算谱函数。通过傅里叶变换和矩阵移位,构建频域谱函数矩阵 Spectral_A,并使用 plt.pcolormesh 绘制谱函数图形。


  • 所有代码和算法均基于紧密包层模型,确保计算过程的高效性和准确性。通过对多个参数的遍历和多维度数组的处理,实现了对哈密顿量谱函数的精确计算。

    转载地址:http://wlqv.baihongyu.com/

    你可能感兴趣的文章
    Netty源码—7.ByteBuf原理四
    查看>>
    Netty源码—8.编解码原理二
    查看>>
    Netty源码解读
    查看>>
    Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
    查看>>
    Netty相关
    查看>>
    Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
    查看>>
    Network Sniffer and Connection Analyzer
    查看>>
    NetworkX系列教程(11)-graph和其他数据格式转换
    查看>>
    Networkx读取军械调查-ITN综合传输网络?/读取GML文件
    查看>>
    Net与Flex入门
    查看>>
    net包之IPConn
    查看>>
    NFinal学习笔记 02—NFinalBuild
    查看>>
    NFS共享文件系统搭建
    查看>>
    nfs复习
    查看>>
    NFS网络文件系统
    查看>>
    nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
    查看>>
    ng 指令的自定义、使用
    查看>>
    nginx + etcd 动态负载均衡实践(二)—— 组件安装
    查看>>
    nginx + etcd 动态负载均衡实践(四)—— 基于confd实现
    查看>>
    Nginx + Spring Boot 实现负载均衡
    查看>>